Part Number Hot Search : 
NJW4820F MHW9188A SB104 SA8016WC 1004A MAN6980E WF050A MJE13003
Product Description
Full Text Search
 

To Download MB54609 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 FUJITSU SEMICONDUCTOR DATA SHEET
DS04-23509-1E
ASSP
BIPOLAR
for Telephone
Quadrature Modulator IC
(With 1.0 GHz Up-converter)
MB54609
s DESCRIPTION
The MB54609 is an intermediate-frequency (IF) quadrature modulator IC incorporating a 1.0-GHz up-converter optimized for use in digital mobile telecommunication systems such as GSM and PDC (Personal Digital Cellular). The MB54609 incorporates a quadrature modulator for IF modulation, a transmission up-convert mixer, and a F/F type phase shifter as well, capable of handing IFs in a broad band. In addition, the MB54609 operates at a low power supply voltage of 3.0 V and a low power supply current of 18 mA (both as typical values), contributing to saving the power consumption of the device.
s FEATURES
* Incorporating a high-performance transmission mixer covering the entire frequency band of up to 800 MHz used for PDC services (Maximum output frequency of 1.1 GHz) Maximum output frequency: 1.1 GHz, Output level: -9 dBm (typical) * Externally connecting the quadrature modulator with the transmission mixer, allowing a bandpass filter (BPF) to be inserted in between The quadrature modulator output can drive a 50 load. * Flip-flop phase shifter capable of handling intermediate frequencies in the broad band (100 to 800 MHz) * Operation at low voltage: 2.7 to 3.0 to 3.3 V * Low current consumption During operating: 18.0 mA (typical) In power save mode: 0.6 mA (typical) * Operating temperature range: Ta = -20 to +85C
s PACKAGE
20-pin Plastic SSOP
(FPT 20P M03) (FPT-20P-M03)
1
MB54609
s PIN ASSIGNMENT
(TOP VIEW)
RFout
1
20
PS
GND
2
19
GND
LO2
3
18
Q
GND
4
17
XQ
XIF
5
16
XQMOD
IF
6
15
QMOD
LO1
7
14
XI
XLO1
8
13
I
GND
9
12
GND
VCC
10
11
VCC
(FPT-20P-M03)
2
MB54609
s PIN DESCRIPTION
Pin no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Pin name RFout GND LO2 GND XIF IF LO1 XLO1 GND VCC VCC GND I XI QMOD XQMOD XQ Q GND PS Up-converter output pin GND pin LO input pin for mixer GND pin IF input complementary pin for mixer IF input pin for mixer LO input pin for quadrature modulator LO input complementary pin for quadrature modulator GND pin Power supply pin Power supply pin GND pin Baseband input (I) pin Baseband input (I) complementary pin Quadrature modulator IF output pin Quadrature modulator IF output complementary pin Baseband input (Q) complementary pin Baseband input (Q) pin GND pin Power save mode control pin Power supply voltage must be applied to both pins. Function
3
MB54609
s BLOCK DIAGRAM
VCC
GND
QMOD
IF
I XI RFout Q XQ
90 shifter
PS
LO1
XLO1
XQMOD
XIF
LO2
s ABSOLUTE MAXIMUM RAGINGS (See WARNING)
Parameter Power supply voltage Output voltage Input voltage Open collector applied voltage Output current Storage temperature Symbol VCC VO VI VOC IO Tstg Rating -0.5 to 5.0 -0.5 to VCC + 0.5 -0.5 to VCC + 0.5 VCC 0.3 (-0.5 to 5.0) 10 -55 to +125 Unit V V V V mA C RFout pin Do not leave this pin open. Remarks
WARNING: Exceeding any of the above Absolute Maximum Ratings may cause permanent damage to the LSI. For normal operation, the device should be used under the recommended operating conditions. Exceeding any of the recommended conditions may adversely affect LSI reliability. Note: Although the MB54609 contains an antistatic element to prevent electrostatic breakdown and the circuitry has been improved in electrostatic protection, observe the following precautions when handling the device: * When storing or carrying the device, put it in a conductive case. * Before handling the device, check that the jigs and tools to be used have been uncharged (grounded) as well as yourself. Use a conductive sheet on the working bench. * Before fitting the device into or removing it from the socket, turn the power supply off. * When handling (such as transporting) the MB54609 mounted board, protect the leads with a conductive sheet.
4
MB54609
s RECOMMENDED OPERATING CONDITIONS
Parameter Power supply voltage Input voltage Open collector applied voltage Operating temperature Symbol VCC VI VOC Ta Value Min. 2.7 GND VCC - 0.2 -20 Typ. 3.0 -- -- -- Max. 3.3 VCC VCC + 0.2 +85 Unit V V V C RFout pin. Do not leave this pin open. Remarks
s ELECTRIC CHARACTERISTICS
(TCC = 3.0 V, Ta = +25C) Parameter Power supply current Power supply current in power save mode Shifter input LO1 Operating band Input level Operating band Baseband input Input amplitude Offset voltage Offset current Mixer input LO2 Mixer output RFout Operating band Input level Operating band Output level Amplitude deviation Modulation precision Phase deviation Vector error Symbol ICC ICCPS fLO1 PLO1 fBB VBB VOS IOS fLO2 PLO2 fRF PRF AERR PERR VERR Value Min. -- -- 100 -15 DC -- 1.5 -- -- -- -- -- -- -- -- Typ. 18.0 0.6 400 -- -- -- 1.6 3.0 750 -- 950 -9 1.3 0.82 1.9 Max. 23.5 0.9 800 -5 10 1.2 1.7 -- 1100 0 1100 -- -- -- -- Unit mA mA MHz dBm MHz Vpp V A MHz dBm MHz fRF = fLO2 fLO1/2 dBm % deg. % fLO1 = 400 MHz (-15 dBm) RMS value fLO2 = 750 MHz RMS value (-5 dBm) fRF = 950 MHz output QMOD/Mix direct RMS value connection VBB = 1 Vpp With external offset unadjusted -- External offset voltage value Input Imp. converted value = 533 k Remarks DC current (Input with no AC signal) DC current (Input with no AC signal)
Carrier suppression
CS
--
-40
-30
dBc
5
MB54609
s EVALUATION BOARD (Reference Example)
* Material: BT resin BT-HL870 (Dielectric constant [1 MHz] = 3.4 to 3.6) * Thickness: 4 layers, 1.6 mm (Copper thickness: External layer = 18 m, Internal layer = 70 m) * Plating: electroless gold plating * Layer 1 (front surface)
1
* Layer 2
(Continued)
6
MB54609
(Continued)
* Layer 3
* Layer 4 (rear surface)
7
MB54609
s MEASUREMENT DATA (Reference Values)
* : Application-common characteristics * DC characteristics (test circuit 1) @ Input with no AC signal
40
Power supply current ICC (mA)
30 VCC = 3.3 V ICC 20 VCC = 3.0 V VCC = 2.7 V Power save mode power supply current ICCPS (mA)
10 VCC = 3.3 V VCC = 3.0 V 0 VCC = 2.7 V ICCPS
1.0 0.8 0.6 0.4
-20
0
20
40 Temperature Ta (C)
60
80
(Continued)
8
MB54609
(Continued)
* Input impedance (Only IC: test circuit 4) @ Impedance from IC pin end * LO1
CH1 S 11 1 U FS 1: 195.75 -766.13 2.0774 pF 100.000 000 MHz 2: C2 1 3: 4: 2 3 4 CH2 S 11 log MAG 10 dB/REF 0 dB 1: -.2709 dB CH2 S 11 log MAG 10 dB/REF 0 dB 28.039 -255.4 300 MHz 16.055 -145.7 500 MHz 12.668 -77.559 800 MHz
* LO2
CH1 S 11 1 U FS 1: 16.354 -61.639 3.2268 pF 800.200 000 MHz 2: C2 3: 4 1 32 1: -2.2095 dB 4: 14.877 -50.018 900 MHz 13.725 -39.764 1 GHz 14.746 4.8403 1.6 GHz
100.000 000 MHz
2: C2 1 2 4 3: 3 4: -.3559 dB 300 MHz -.5822 dB 500 MHz -1.2776 dB 800 MHz
800.200 000 MHz
2: C2 1 4: 2 3 4 3: -2.5448 dB 900 MHz -2.8953 dB 1 GHz -5.2236 dB 1.6 GHz
START 100.000 000 MHz
STOP 2 100.000 000 MHz
START 100.000 000 MHz
STOP 2 100.000 000 MHz
* Output impedance (Only IC: test circuit 4) @ Impedance from IC pin end * RFout
CH1 S 22 1 U FS 1: 9.8633 -124.64 1.5961 pF 800.000 000 MHz 2: C2 3: 1 4: 9.8984 -106.21 900 MHz 11.055 -92.508 1 GHz 12.137 -50.846 1.4 GHz -.4733 dB
4 CH2 S 22 log MAG 10 dB/REF 0 dB
32 1:
800.000 000 MHz
2: C2 1 2 3 4 4: -2.0524 dB 1.4 GHz 3: -.6207 dB 900 MHz -.8619 dB 1 GHz
START 100.000 000 MHz
STOP 2 100.000 000 MHz
9
MB54609
s 800-MHz PDC APPLICATION MEASUREMENT DATA (Reference Values)
Parameter Baseband input signal Shifter input signal LO1 Mixer input signal LO2 Mixer output signal RFout Symbol fBB VBB fLO1 PLO1 fLO2 PLO2 fRF PRF RLLO1 Return loss RLLO2 RLRF AERR Modulation precision Carrier suppression PERR VERR CS Measurement result 42 1.0 400 -15 750 -5 950 -8.4 -17 -2 -12 1.3 0.82 1.9 -34.5 Unit kbps Vpp MHz dBm MHz dBm MHz dBm dB dB dB % deg. % dBc fRF = fLO2 + fLO1/2 SSB value fLO1 = 400 MHz fLO2 = 750 MHz fRF = 950 MHz RMS Magnitude Error RMS Phase Error RMS Vector Error -- 2 2 3 Condition /4DQPSK, Root-Nyquist filter ( = 0.5) Single-end input -- -- -- -- Test circuit -- -- -- -- -- -- -- 1
* External circuit constants (with the IC mounted on the evaluation board)
VCC VCC RFout 6.8 n 1.5 p 2 LO2 3 100 p 4 from A 510 p from B 510 p LO1 7 51 1000 p 8 1000 p 9 VCC GND 10 VCC 0.1 VCC 11 0.1 GND GND 12 XLO1 I 13 LO1 XI 14 1k + - 100 1k 100 +- VCC offset offset I 6 IF 5 GND XIF XQ 17 XQMOD 16 MB54609 QMOD 15 1k + - 100 to A to B offset GND LO2 GND 19 Q 18 + 0.1 1 RFout PS 20 VCC Operation Power save mode - Q offset 100 1k
(Continued)
10
MB54609
(Continued)
* Modulation precision and output spectrum (test circuit 2) @ Baseband signal: /4 DQPSK, 42 kbps, 1.0 Vpp, PN 15, Root-Nyquist filter = 0.5 Input signals: LO1 = 400 MHz, -15 dBm; LO2 = 750 MHz, -5 dBm Output signal: RFout = 950 MHz * Modulation precision
190 RMS Vector Peak Vector RMS Magnitude Peak Magnitude RMS Phase Peak Phase Carrier Freq Carrier Phase Carrier Leak Error = Error = Error = Error = Error = Error = Offset = Offset = = 1.927% 4.234% 1.290% 3.364% 0.821 degs -2.240 degs 8.561e+03 Hz 157.455 degs -32.429 dB
* Output spectrum
Bias Vector Gravity Center
= ( 2.305, 0.634)% = ( -4.635, 10.356)%
VG: 5.000e-01 V/Div Baseband Filter: RtNyq (0.5000) Rectangle Len = 64 OSR = 4.761905
CENTER = 950 MHz SPAN = 200 kHz RBW = 3 kHz VBW = 100 Hz SWP = 3 s ATT = 10 dB REF = 0 dBm 10 dB/div.
* Spectrum (test circuit 2) @ Baseband signal: /4 DQPSK, 42 kbps, 1.0 Vpp, 0000, Root-Nyquist filter = 0.5 Input signals: LO1 = 400 MHz, -15 dBm; LO2 = 750 MHz, -5 dBm Output signal: RFout = 950 MHz * Span = 240 kHz * Span = 700 MHz
Image (550 MHz) -26.9 dBm LO2 (750 MHz) -27.1 dBm T X (950 MHz) -10.1 dBm
-38.8 dBc
CENTER = 950 MHz SPAN = 26.2 kHz RBW = 300 Hz VBW = 300 Hz SWP = 1.3 s ATT = 10 dB REF = 0 dBm 10 dB/div.
-34.5 dBc
CENTER = 750 MHz SPAN = 700 MHz RBW = 1 MHz VBW = 3 kHz SWP = 1.1 s ATT = 10 dB REF = 10 dBm 10 dB/div.
(Continued)
11
MB54609
(Continued)
* RF output level dependent on baseband amplitude (PRF: test circuit 1, Modulation precision: test circuit 2) @ Baseband signal of test circuit 2: /4 DQPSK, 42 kbps, 1.0 Vpp, PN 15, Root-Nyquist filter = 0.5 Input signals of test circuits 1 and 2: LO1 = 400 MHz, -15 dBm; LO2 = 750 MHz, -5 dBm Output signal: RFout = 950 MHz
0
RF output level PRF (dBm)
-10
PRF -20 6
-30
4 VERR
-40
2
0 0.1 1 Baseband amplitude VBB (Vpp) 10
* RF output level dependent on LO1 and LO2 input levels (PRF: test circuit 1, Modulation precision: test circuit 2) @ Baseband signal of test circuit 2: /4 DQPSK, 42 kbps, 1.0 Vpp, PN 15, Root-Nyquist filter = 0.5 Input signals of test circuits 1 and 2: LO1 = 400 MHz, -15 dBm; LO2 = 750 MHz, -5 dBm Output signals of test circuits 1 and 2: RFout = 950 MHz * RF output level dependent on LO1 input level * RF output level dependent on LO2 input level (@PLO2 = -5 dBm) (@PLO1 = -15 dBm)
Modulation precision RMS Vector Error VERR (%) 0 RF output level PRF (dBm) PRF -10 6 -20 4 -30 VERR -40 0 -20 -15 -10 -5 0 5 Shifter output level PLO1 (dBm) 2 0 RF output level PRF (dBm) PRF -10 6 -20 4 -30 VERR -40 0 -20 -15 -10 -5 0 5 Mixer input level PLO2 (dBm) 2 Modulation precision RMS Vector Error VERR (%)
Modulation precision RMS Vector Error VERR (%)
(Continued)
12
MB54609
(Continued)
* RF output level dependent on temperature (PRF: test circuit 1, Modulation precision: test circuit 2) @ Baseband signal of test circuit 2: /4 DQPSK, 42 kbps, 1.0 Vpp, PN 15, Root-Nyquist filter = 0.5 Input signals of test circuits 1 and 2: LO1 = 400 MHz, -15 dBm; LO2 = 750 MHz, -5 dBm Output signals of test circuits 1 and 2: RFout = 950 MHz
0 PRF -10 RF output level PRF (dBm) Modulation precision RMS Vector Error VERR (%) VCC = 3.3 V VCC = 3.0 V VCC = 2.7 V
-20
3
-30 VERR -40
VCC = 3.3 V 2 VCC = 3.0 V VCC = 2.7 V 1
0 -20 0 20 40 60 80 Temperature Ta (C)
* Carrier suppression dependent on temperature (test circuit 2) @ Baseband signal: /4 DQPSK, 42 kbps, 1.0 Vpp, 0000, Root-Nyquist filter = 0.5 Input signals: LO1 = 400 MHz, -15 dBm; LO2 = 750 MHz, -5 dBm Output signal: RFout = 950 MHz
-20
Carrier suppression CS (dBc)
-30 VCC = 3.3 V VCC = 3.0 V -40 VCC = 2.7 V
-50
-40
-20
0
20
40
60
80
Temperature Ta (C)
(Continued)
13
MB54609
(Continued)
* Input impedance (with components mounted: test circuit 3) @ Impedance including external components and evaluation board * LO1
CH1 S 11 1 U FS 1: 48.992 -2.7891 570.64 pF 100.000 000 MHz 2: Cor 1 4 32 4: 3: 41.787 -4.8965 300 MHz 35.598 1.75 500 MHz 36.002 22.75 800 MHz -30.473 dB CH2 S 11 log MAG 10 dB/REF 0 dB
* LO2
CH1 S 11 1 U FS 1: 6.7764 3.2986 699.98 pH 750.000 000 MHz 2: Cor 1 2 3 4 3: 4: 7.6133 9.4209 800 MHz 10.451 22.735 900 MHz 27.307 58.09 1.1 GHz -2.3584 dB
CH2 S 11
log MAG
10 dB/REF 0 dB
1:
1:
100.000 000 MHz 2: Cor 3: -19.659 dB 300 MHz -15.42 dB 500 MHz -10.449 dB 800 MHz Cor 1
750.00 000 MHz 2: 3: -2.5713 dB 800 MHz -3.0204 dB 900 MHz 4 -3.8098 dB 1.1 GHz
1 2 3
4: 4
2
3 4:
START 100.000 000 MHz
STOP 1 100.000 000 MHz
START 100.000 000 MHz
STOP 1 100.000 000 MHz
* Output impedance (with components mounted: test circuit 3) @ Impedance including external components and evaluation board * RFout
CH1 S 11 1 U FS 2: 78.953 -16.762 9.9949 pF 950.000 000 MHz 1: Cor 12 4 4: 3 3: 40.609 41.357 900 MHz 28.776 -28.809 1 GHz 12.979 -4.8784 1.1 GHz -11.792 dB
CH2 S 11
log MAG
10 dB/REF 0 dB
2:
950.000 000 MHz 1: Cor 3: -7.4163 dB 900 MHz -7.4 2 1 4: dB 1 GHz 4
3 -4.5661 dB 1.1 GHz
START 100.000 000 MHz
STOP 1 100.000 000 MHz
14
MB54609
s 1.5-GHz PDC APPLICATION MEASUREMENT DATA (Reference Values)
* Measurement result Parameter Baseband input signal Shifter input signal LO1 Mixer input signal LO2 Mixer output signal RFout Symbol fBB VBB fLO1 PLO1 fLO2 PLO2 fRF PRF RLLO1 Return loss RLLO2 RLRF AERR Modulation precision Carrier suppression PERR VERR CS Measurement result 42 1.0 356 -5 1619 -5 1441 -13.4 -18 -6 -14 1.6 0.90 2.2 -39.0 Unit kbps Vpp MHz dBm MHz dBm MHz dBm dB dB dB % deg. % dBc fRF = fLO2 + fLO1/2 SSB value fLO1 = 356 MHz fLO2 = 1619 MHz fRF = 1441 MHz RMS magnitude error RMS phase error RMS vector error -- 2 2 3 Condition /4 DQPSK, Root-Nyquist filter ( = 0.5) Single-end input -- -- -- -- Test circuit -- -- -- -- -- -- -- 1
* External circuit constants (with the IC mounted on the evaluation board)
VCC VCC RFout 1.8 n 1.5 p 2 LO2 100 p 4 from A 510 p from B 510 p LO1 7 51 1000 p 8 1000 p 9 VCC GND 10 VCC 0.1 VCC 11 0.1 GND GND 12 XLO1 I 13 LO1 XI 14 1k + - 100 1k 100 +- VCC offset offset I 6 IF 5 GND XIF XQ 17 XQMOD 16 MB54609 QMOD 15 to B 1k + - 100 to A offset 3 GND LO2 GND 19 Q 18 + 0.1 1 RFout PS 20 VCC Operation Power save mode - 100 1k Q offset
(Continued)
15
MB54609
(Continued)
* Modulation precision and output spectrum (test circuit 2) @ Baseband signal: /4 DQPSK, 42 kbps, 1.0 Vpp, PN 15, Root-Nyquist filter = 0.5 Input signals: LO1 = 356 MHz, -5 dBm; LO2 = 1619 MHz, -5 dBm Output signal: RFout = 1441 MHz * Modulation precision * Output spectrum
148
RMS Vector Peak Vector RMS Magnitude Peak Magnitude RMS Phase Peak Phase Carrier Freq Carrier Phase Carrier Leak
Error = Error = Error = Error = Error = Error = Offset = Offset = =
2.243% 4.552% 1.597% 3.756% 0.902 degs -1.977 degs -1.454e+03 Hz 7.417 degs -33.001 dB
Bias Vector Gravity Center
= ( 1.839, 1.275)% = (-1.295, 0.833)%
VG: 7.000e-02 V/Div Baseband Filter: RtNyq (0.500) Rectangle Len = 64 OSR = 4.761905
CENTER = 1441 MHz SPAN = 200 kHz RBW = 3 kHz VBW = 3 kHz SWP = 100 ms AVG = 128 ATT = 10 dB REF = -10 dBm 10 dB/div.
* Spectrum (test circuit 2) @ Baseband signal: /4 DQPSK, 42 kbps, 1.0 Vpp, 0000, Root-Nyquist filter = 0.5 Input signals: LO1 = 356 MHz, -5 dBm; LO2 = 1619 MHz, -5 dBm Output signal: RFout = 1441 MHz * Span = 26.2 kHz * Span = 500 MHz
LO2 (1619 MHz) -17.4 dBm Image (1797 MHz) -20.6 dBm
-38.4 dBc
CENTER = 1441 MHz SPAN = 26.2 kHz RBW = 300 Hz VBW = 100 Hz SWP = 4 s ATT = 10 dB REF = -10 dBm 10 dB/div.
-39.0 dBc
CENTER = 1619 MHz SPAN = 500 MHz RBW = 1 MHz VBW = 1 kHz SWP = 3 s ATT = 10 dB REF = -10 dBm 10 dB/div.
T X (1441 MHz) -15.6 dBm
(Continued)
16
MB54609
(Continued)
* RF output level dependent on baseband amplitude (PRF: test circuit 1, Modulation precision: test circuit 2) @ Baseband signal of test circuit 2: /4 DQPSK, 42 kbps, 1.0 Vpp, PN 15, Root-Nyquist filter = 0.5 Input signals of test circuits 1 and 2: LO1 = 356 MHz, -5 dBm; LO2 = 1619 MHz, -5 dBm Output signals of test circuits 1 and 2: RFout = 1441 MHz
0
RF output level PRF (dBm)
-20
PRF
6
-30
4
-40
VERR 2
0 0.1 1 Base band amplitude VBB (Vpp) 10
* RF output level dependent on LO1 and LO2 input levels (PRF: test circuit 1, Modulation precision: test circuit 2) @ Baseband signal of test circuit 2: /4 DQPSK, 42 kbps, 1.0 Vpp, PN 15, Root-Nyquist filter = 0.5 Input signals of test circuits 1 and 2: LO1 = 356 MHz, -5 dBm; LO2 = 1619 MHz, -5 dBm Output signals of test circuits 1 and 2: RFout = 1441 MHz * RF output level dependent on LO1 input level (@PLO2 = -5 dBm)
Modulation precision RMS Vector Error VERR (%) 0 RF output level PRF (dBm)
* RF output level dependent on LO2 input level (@PLO1 = -5 dBm)
0 RF output level PRF (dBm) -10 PRF 6 -20 4 -30 VERR -40 0 -20 -15 -10 -5 0 5 Mixer input level PLO2 (dBm) 2 Modulation precision RMS Vector Error VERR (%)
-10 -20
PRF 6 4
-30 VERR -40 0 -20 -15 -10 -5 0 5 Shifter output level PLO1 (dBm) 2
Modulation precision RMS Vector Error VERR (%)
-10
(Continued)
17
MB54609
(Continued)
* Input impedance (with components mounted: test circuit 3) @ Impedance including external components and evaluation board * LO1
CH1 S 11 1 U FS 1: 48.992 -2.7891 570.64 pF 100.000 000 MHz 2: Cor 1 4 32 4: 3: 41.787 -4.8965 300 MHz 35.598 1.75 500 MHz 36.002 22.75 800 MHz -30.473 dB CH2 S 11 log MAG 10 dB/REF 0 dB 1 Cor 4 2 2: 3 3:
* LO2
CH1 S 11 1 U FS 4: 36.615 -51.574 1.9287 pF 1 600.000 000 MHz 1: 15.662 38.445 1 GHz 60.707 87.941 1.2 GHz 174.97 -100.9 1.4 GHz -5.5383 dB
CH2 S 11
log MAG
10 dB/REF 0 dB
1:
4:
100.000 000 MHz 2: Cor 3: -19.659 dB 300 MHz -15.42 dB 500 MHz -10.449 dB 800 MHz Cor
1 600.000 000 MHz
1: 2: 3: -3.3828 dB 1 GHz -4.0604 dB 1.2 GHz -3.7229 dB 1.4 GHz
4 1 2 3
1 2 3
4: 4
START 100.000 000 MHz
STOP 1 100.000 000 MHz
START 100.000 000 MHz
STOP 2 100.000 000 MHz
* Output impedance (with components mounted: test circuit 3) @ Impedance including external components and evaluation board * RFout
2: 74.918 -5.0469
CH1 S 11
1 U FS
21.884 pF 1 441.000 000 MHz
1 Cor 3 4 2
1: 3: 4:
22.76 56.336 1.2 GHz 58.35 5.0293 1.48 GHz 58.844 42.438 1.6 GHz -13.853 dB
CH2 S 11
log MAG
10 dB/REF 0 dB
2:
1 441.000 000 MHz
1: Cor 2 1 4 3 4: -8.6101 dB 1.6 GHz 3: -3.35 dB 1.2 GHz -20.927 dB 1.48 GHz
START 100.000 000 MHz
STOP 2 100.000 000 MHz
18
MB54609
s TEST CIRCUITS (Reference Examples)
* Test circuit 1 (for SSB measurement)
SG (50 ) SG (50 ) VCC = 3.0 V
LO1
LO2
VBB*cos (2 ft) I D.U.T Synchronized Q VBB*sin (2 ft) VBB = 1.0 Vpp f = 600 kHz RFout Spectrum analyzer (50 )
offset
offset
offset
offset
VOS = 1.6 V
VOS
VOS
VOS
VOS
* Test circuit 2 (for modulation precision measurement)
SG (50 )
SG (50 ) VCC = 3.0 V
LO1
LO2
I Baseband signal generator Q D.U.T RFout Modulation precision analyzer (50 )
offset
offset
offset
offset
VOS = 1.6 V
VOS
VOS
VOS
VOS
GND
VCC
GND
VCC
(Continued)
19
MB54609
(Continued)
* Test circuit 3 (for impedance measurement with components mounted)
Network analyzer (50 ) VCC = 3.0 V
LO1
LO2
N.C.
I D.U.T RFout Network analyzer (50 )
N.C.
Q
offset
offset
offset
offset
VOS = 1.6 V
VOS
VOS
VOS
VOS
* Test circuit 4 (for measurement of impedance of only IC)
Network analyzer PORT-1 PORT-2
VCC = 3.0 V (applied to PORT-2 internal bias tee) VCC 1 2 3 4 5 6 7 8 9 VCC 10 0.1 VCC VCC 11 0.1 RFout GND LO2 GND XIF PS GND Q XQ XQMOD 20 Power save mode 19 18 1k 17 1k 16 15 14 1k XL01 GND I GND 13 1k 12 VCC VOS = 1.6 V Operation
MB54609
IF L O1 QMOD XI
20
GND
VCC
MB54609
s ORDERING INFORMATION
Part number MB54609PFV Package 20-pin Plastic SSOP (FPT-20P-M03) Remarks
21
MB54609
s PACKAGE DIMENSION
20-pin Plastic SSOP (FPT-20P-M03) *: These dimensions do not include resin protrusion.
* 6.500.10(.256.004)
1.25 -0.10 +.008 .049 -.004
+0.20
(Mounting height)
0.10(.004)
INDEX
*4.400.10 6.400.20
(.173.004) (.252.008)
5.40(.213) NOM
0.650.12 (.0256.0047)
0.22 -0.05 +.004 .009 -.002
+0.10
"A"
0.15 -0.02 +.002 .006 -.001
+0.05
Details of "A" part 0.100.10(.004.004) (STAND OFF)
5.85(.230)REF
0
10
0.500.20 (.020.008)
C
1994 FUJITSU LIMITED F20012S-2C-4
Dimensions in mm (inches)
22
FUJITSU LIMITED
For further information please contact:
Japan FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-88, Japan Tel: (044) 754-3763 Fax: (044) 754-3329 North and South America FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A. Tel: (408) 922-9000 Fax: (408) 432-9044/9045 Europe FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122 Asia Pacific FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220
All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams. FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.
F9703 (c) FUJITSU LIMITED Printed in Japan
24


▲Up To Search▲   

 
Price & Availability of MB54609

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X